Solving Inequalities Using Multiplication or Division

OBJECTIVE: I can use multiplication or division to solve inequalities

3-3

Warm-Up

Consider the inequality 4 >1. Copy and complete each statement at the right by replacing each with < or >. What happens to the inequality symbol when you multiply each side by a positive number? What happens to the inequality symbol when you multiply each side by a negative number? Justify your reasoning.

4 • 3 🔳 1 • 3
4 · 2 🔳 1 · 2
4 · 1 🔳 1 · 1
4 • −1 ■ 1 • −1
4 · −2 ■ 1 · −2
4 · −3 ■ 1 · −3

Essential Understanding Just as you used multiplication and division to solve equations in Topic 2, you can use multiplication and division to solve inequalities.

#1 Multiplying by a Positive Number

What are the solutions of $\frac{x}{3} < -2$? Graph the solutions.

1. What are the solutions of $\frac{c}{8} > \frac{1}{4}$? Graph the solutions.

#2 Multiplying by a Negative Number

What are the solutions of $-\frac{3}{4}w \ge 3$? Graph and check the solutions.

2. What are the solutions of $-\frac{n}{3} < -1$? Graph and check.

Concept Understanding

Key Concept:

Let a, b, and c be real numbers with c > 0.ExamplesIf a > b, then $\frac{a}{c} > \frac{b}{c}$.6 > 3, so $\frac{6}{3} > \frac{3}{3}$.If a < b, then $\frac{a}{c} < \frac{b}{c}$.9 < 12, so $\frac{9}{3} < \frac{12}{3}$.Let a, b, and c be real numbers with c < 0.6 > 3, so $\frac{6}{-3} < \frac{3}{-3}$.If a > b, then $\frac{a}{c} < \frac{b}{c}$.6 > 3, so $\frac{6}{-3} < \frac{3}{-3}$.If a < b, then $\frac{a}{c} < \frac{b}{c}$.6 > 3, so $\frac{6}{-3} < \frac{3}{-3}$.If a < b, then $\frac{a}{c} > \frac{b}{c}$.9 < 12, so $\frac{9}{-3} > \frac{12}{-3}$.

These properties are also true for inequalities using \geq and \leq .

#3 Dividing by a Positive Number

Part-Time Job You walk dogs in your neighborhood after school. You earn \$4.50 per dog. How many dogs do you need to walk to earn at least \$75?

3. A student club plans to buy food for a soup kitchen. A case of vegetables costs \$10.68. The club can spend at most \$50 for this project. What are the possible numbers of cases the club can buy?

#4 Dividing by a Negative Number

What are the solutions of $-9y \le 63$? Graph the solutions.

4. What are the solutions of -5x > -10? Graph the solutions.