Name

Parallel and Perpendicular Lines

 $OBJECTIVE: I \ can \ determine \ whether \ lines \ are \ parallel, \ perpendicular, \ or \ neither \ yo \ write \ equations \ of \ parallel \ lines \ and \ perpendicular \ lines$

Warm-Up

Copy the graph shown at the right. Can you draw a line that will not intersect either of the lines in the graph? If so, draw the line. If not, why not?

Can you draw a line that will intersect one of the lines in such a way that the intersection forms four congruent angles? If so, draw the line. If not, why not?

Essential Understanding

Essential Understanding You can determine the relationship between two lines by comparing their slopes and y-intercepts.

Key Concept: Slopes of Parallel Lines

Words

Nonvertical lines are parallel if they have the same slope and different y-intercepts. Vertical lines are parallel if they have different x-intercepts.

Example
The graphs of $y = \frac{1}{2}x + 1$ and $y = \frac{1}{2}x - 2$ are lines that have the same slope, $\frac{1}{2}$, and different *y*-intercepts. The lines are parallel.

Graph

Example

#1 Writing an Equation of a Parallel Line

A line passes through (12, 5) and is parallel to the graph of $y = \frac{2}{3}x - 1$. What equation represents the line in slope-intercept form?

Have the slope
$$\rightarrow M_1 = \frac{2}{3}$$

Have the slope - M, = 2 point (12,5), use point slope form

$$y-5=\frac{2}{3}(x-12)$$
 \(Distribute \frac{2}{3}

$$y-5=\frac{24}{3}\times-\frac{24}{3}$$

The graph of $y = \frac{2}{3}x - 3$ passes through (12,5) and is parallel to the graph of Y= 3x -1

Your Turn to Work it Out

1. A line passes through (-3, -1) and is parallel to the graph of y = 2x + 3. What equation represents the line in slope-intercept form?

$$y - y_1 = m(x - x_1)$$

 $y - (-1) = (2)(x - (-3))$

$$Y_1 = 2x + 3$$
 $Y_2 = 2x + 5$

$$y + 1 = 2(x + 3)$$

 $y + 1 = 2x + 6$
 $y = 2x + 5$

Concept Understanding

You can also use slope to determine whether two lines are perpendicular. Perpendicular lines are lines that intersect to form right angles.

Key Concept: Slopes of Perpendicular Lines

Words

Two nonvertical lines are perpendicular if the product of their slopes is -1. A vertical line and a horizontal line are also perpendicular.

The graph of $y = \frac{1}{2}x - 1$ has a slope of $\frac{1}{2}$. The graph of y = -2x + 1 has a slope of -2. Since $\frac{1}{2}(-2) = -1$ the lines are perpendicular.

Graph

Two numbers whose product is -1 are opposite reciprocals. So, the slopes of perpendicular lines are opposite reciprocals. To find the opposite reciprocal of $-\frac{3}{4}$, for example, first find the reciprocal, $-\frac{4}{3}$. Then write its opposite, $\frac{4}{3}$. Since $-\frac{3}{4}$ # $\frac{4}{3}$ = -1, $\frac{4}{3}$ is the opposite reciprocal of $-\frac{3}{4}$.

Example

#2 Classifying Lines

Are the graphs of 4y = -5x + 12 and $y = \frac{4}{5}x - 8$ parallel, perpendicular, or neither? Explain.

$$\frac{4y}{4} = -\frac{5y}{4} + \frac{12}{4}$$

$$M_1 = -\frac{5}{4}$$

To determine if they are perpendicular, multiply M, . M2

$$-\frac{5}{4} \cdot \frac{4}{5} = \frac{-20}{20}$$

=-1 + this negative indicales that
those two functions are

perpendicular.

Your Turn to Work it Out

2. Are the graphs of the equations parallel, perpendicular, or neither? Explain. a. $y = \frac{3}{4}x + 7$ and 4x - 3y = 9b. 6y = -x + 6 and $y = -\frac{1}{6}x$

a.
$$y = \frac{3}{4}x + 7$$
 and $4x - 3y = 9$

b.
$$6y = -x + 6$$
 and $y = -\frac{1}{6}x + 6$

$$y = \frac{3}{4}x + 7$$
 $4x - 3y = 9$
 $-4x$
 $-4x$
 $-3y = -4x + 9$
 $-3y = -4x + 9$
 $-3y = -3y = -3y + 9$

$$M_z = \frac{4}{3}$$

These two graph are parallel.

$$\frac{3}{4} \cdot \frac{4}{3} = \frac{12}{12}$$

These graph are neither porallel nor perpendicular

Example

#3 Writing an Equation of a Perpendicular Line

(A)
$$y = \frac{1}{3}x + 10$$
 (B) $y = 3x + 10$

$$y = 3x + 10$$

$$y = -3x - 2$$

$$M_1 = \frac{1}{3}$$
 \longrightarrow $M_2 - \frac{3}{1}$ $Y - Y_1 = m(x - X_1)$ $Y - (4) = (-3)(x - (2))$ $Y - 4 = -3(x - 2)$ $Y - 4 = -3x + 6$

$$4-41 = m(x-x1)$$
 $4-41 = (-3)(x-(2))$
 $4-4 = -3(x-2)$
 $4-4 = -3x+6$
 $4-4 = -3x+10$

Your Turn to Work it Out

3. A line passes through (1, 8) and is perpendicular to the graph of y = 2x + 1. What equation represents the line in slope-intercept form?

$$H_1 = \frac{2}{1} \times \frac{1}{2}$$

Positive? add negative

$$Y = 2x + 1$$

$$H_1 = \frac{2}{1} \times \frac{1}{1} = \frac{1}{2} \times \frac{1}{2} = -\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{2} \times \frac{1}$$