Name

Graphing Absolute Value Functions

OBJECTIVE: I can graph an absolute value function to translate the graph of an absolute value function

Warm-Up

Write the equations of Line 1 and Line 2. How can you transform the equation of Line 1 into the equation of Line 2? How can you slide Line 1 in the coordinate plane so that it becomes Line 2? Explain.

Find the equation to both graphs

Line 1
slope =
$$\frac{1}{3}$$

V-int = $\frac{1}{3}$
 $y = \frac{1}{3}x + 1$
 $y = \frac{1}{3}x + 1$
 $y = \frac{1}{3}x - 1$

- · You can transform line 1 into line 2 by changing y-int into -1
- · You can plide line 1 2 units down to become Line 2

Essential Understanding

Essential Understanding You can quickly graph absolute value equations by shifting the graph of y = |x|.

Parent function

#1 Describing Translations

Below are the graphs of y = |x| and y = |x| - 2. How are the graphs related?

- . The graphs have the same shape
- o Notice each point on y=|x|-2 is 2 onits lower than y=|x|
- o the graph of y=1x1-2 was translated 2 units down from y=1x1

1. How is the graph at the right related to the graph of y = |x|?

- . The graph has the same shape

 The graph is place higher than y=|x|This graph was translated 3 units up.

 This graph is y=|x|+3

#2 Graphing a Vertical Translation

What is the graph of y = |x| + 2?

Translate 2 units up

(Every point)

Translating means shifting the graph, not changing it shape or size

2. What is the graph of y = |x| - 4?

The gaph of y=|x|-4 was translated 4 units down from y=|x|.

Concept Understanding

The graphs below show what happens when you graph y = |x + 2| and y = |x - 2|.

For a positive number h, y = |x + h| translates the graph of y = |x| left h units, and y = |x - h| translates the graph of y = |x| right h units.

#3 Graphing a Horizontal Translation

What is the graph of y = |x + 5|?

horizontal (opposite)

70	able
*	(x+5)
- 4	-4+5 = 1
-2	-2 +5 = 3
0	10 +2/=2
52	watch the
24	graph

3. What is the graph of y = |x (5) ? -5 mores 5 onto to the right

Concept Understanding

The absolute value function is an example of a piecewise function. A piecewise function is a function that has different rules for different parts of its domain. For example, when $x \ge 0$, |x| = x. When x < 0, |x| = -x.

Another example of a piecewise function is a step function. A step function is a function that pairs every number in an interval with a single value.

The graph of a step function can look like the steps of a staircase. Each piece of the graph is a horizontal s segment that is missing its right endpoint, indicated by an open circle.

#4 Graphing a Step Function

Transportation A school will charter buses so that the student body can attend a football game. Each bus holds a maximum of 60 students. Make a graph that models the relationship between the number of students x that go to the game by bus and the number of buses y that are needed.

4. Make a graph that models the relationship between the number of students x that go to the game by bus and the number of buses y that are needed if each bus holds a maximum of 50 students.

